There aren't any posts currently published in this category.
Kawamura, K., Okawa, K., Gutmann, G., Chu, T., Yu, J., & Motomura, M. (2021). GPU-Based Acceleration of Fully Parallel Annealing Algorithm for Combinatorial Optimization. IEEE International System-on-Chip Conference. [Temporary link], [Future link].
Pramudwiatmoko, A., Gutmann, G., Ueno, Y., Kakugo, A., Yamamura, M., & Konagaya, A. (2020). Tensegrity representation of microtubule objects using unified particle objects and springs. Chem-Bio Informatics Journal, 20(0), 19-43. doi:10.1273/cbij.20.19
Gutmann, G., & Konagaya, A. (2020). Real-time Inferencing and Training of Artificial Neural Network for Adaptive Latency Negation in Distributed Virtual Environments. 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA). doi:10.1109/hora49412.2020.9152833
Pramudwiatmoko, A., Tsutoh, S., Gutmann, G., Ueno, Y., & Konagaya, A. (2019). A high-performance haptic rendering system for virtual reality molecular modeling. Artificial Life and Robotics, 24(4), 542–549. doi: 10.1007/s10015-019-00555-9
Gutmann, G., & Konagaya, A. (2019). Predictive Simulation: Using Regression and Artificial Neural Networks to Negate Latency in Networked Interactive Virtual Reality. ArXiv: Human-Computer Interaction. Retrieved from https://arxiv.org/abs/1910.04703
Yuhui, Z., Gutmann, G., & Konagaya, A. (2019). Irregular Convolutional Auto-Encoder on Point Clouds. ArXiv, stat.ML. Retrieved from https://arxiv.org/abs/1910.02686
Inoue, D., Gutmann, G., Nitta, T., Kabir, A. M. R., Konagaya, A., Tokuraku, K., … Kakugo, A. (2019). Adaptation of Patterns of Motile Filaments under Dynamic Boundary Conditions. ACS Nano. doi: 10.1021/acsnano.9b01450
Chen, X., Gutmann, G. S., & Bungo, J. (2019). Deep Learning by Doing: The NVIDIA Deep Learning Institute and University Ambassador Program. The Journal of Computational Science Education,10(1), 93-99. doi:https://doi.org/10.22369/issn.2153-4136/10/1/16 [JOCSE Link]
Pramudwiatmoko, A., Tsutoh, S., Gutmann, G., & Konagaya, A. (2019). Haptic Rendering Applied to Hand Tracking 3D User Interface for a Molecular Modeling Environment. International Society of Artificial Life and Robotics. https://isarob.org/symposium/index.php?main_page=timetable.
Gutmann, G., Azuma, R., & Konagaya, A. (2018). A Virtual Reality Computational Platform Dedicated for the Emergence of Global Dynamics in a Massive Swarm of Objects. Journal of the Imaging Society of Japan,57(6), 647-653. https://doi.org/10.11370/isj.57.647
Azuma, R., Kishi, S., Gutmann, G., & Konagaya, A. (2018). All-atom molecular dynamics of film supported flat-shaped DNA origami in water. Chem-Bio Informatics Journal,18(0), 96-118. doi:10.1273/cbij.18.96
Gutmann, G., Inoue, D., Kakugo, A., & Konagaya, A. (2017). Parallel Interaction Detection Algorithms for a Particle-based Live Controlled Real-time Microtubule Gliding Simulation System Accelerated by GPGPU. New Generation Computing,35(2), 157-180. doi:10.1007/s00354-017-0011-5
Gutmann, G., Inoue, D., Kakugo, A., & Konagaya, A. (2016). Using a master and slave approach for GPGPU computing to achieve optimal scaling in a 3D real-time simulation. 2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS). doi:10.1109/nems.2016.7758208
Gutmann, G., Inoue, D., Kakugo, A., & Konagaya, A. (2016). Real-time 3D microtubule gliding simulation accelerated by GPU computing. International Journal of Automation and Computing,13(2), 108-116. doi:10.1007/s11633-015-0947-1
Gutmann, G., Inoue, D., Kakugo, A., & Konagaya, A. (2014). Real-Time 3D Microtubule Gliding Simulation. Communications in Computer and Information Science Life System Modeling and Simulation,13-22. doi:10.1007/978-3-662-45283-7_2
Select Posters:
Gutmann, G., Konagaya, A., & Azuma, R. (2019, July 8). Predictive Simulation: Negating Latency for Networked Interactive VR. High-Performance Graphics 2019. Strasbourg, France.
Gutmann, G., Konagaya, A., & Azuma, R. (2018, August 16). Multi-GPU Computation Enabling VR Simulation Environments with 10 Million Particles. In GPU Technology Conference. Tokyo, Japan.